TURBULENT WAKE IN A STRATIFIED MEDIUM

A, T, Onufriev

The problem of determining the form of the turbulent wake being formed behind a self-
propelled body in a medium with density varying in the direction of the effect of gravity
is considered. The schematic picture of wake development behind a moving object is the
following: Initially, diffusion is identical in all directions, and the wake broadens sym-
metrically; diffusion becomes strongly anisotropic with recession from the object, it
diminishes in the vertical direction under the effect of gravity, and the wake becomes
flattened; turbulent mixing within the wake results in the production of a more homo~
geneous density distribution within the volume occupied by the wake than in the sur-
rounding medium; such a fluid volume turns out to be removed from the equilibrium
state and tends to return to the equilibrium state under the effect of gravity; collapse
of the wake occurs accompanied by its further expansion in the horizontal direction and
the excitation of internal waves,

The problem of the first stage of wake developemnt (prior to collapse), i.e., the problem of turbulent
diffusion in a stratified medium, is considered herein. The medium itself is at rest. Equations obtained in
[1], which permit the description of anisotropic diffusion, are the basis for the description of the diffusion
process, The standard simplifications used in problems involving the propagation of a turbulent wake (re-
flecting the experimental observation that the free turbulent zones are relatively narrow) are used. Mo-
lecular diffusion is not taken into account, It is considered that density pulsations are small and, hence,
should be taken into account only in members containing the acceleration of gravity [2].

The z axis is directed upward along the direction of the effect of gravity, and the x axis inthe motion di-
rection. The picture of the flow in the coordinate system connected with the body is stationary. The free
stream velocity U, is assumed to be considerably greater than the velocity component in the wake. The
scales along the axes I, ly, I, and the characteristic values of the pulsating velocities are distinct. The
above-mentioned circumstances permit introduction of simplifications which are utilized in deriving the
boundary layer equations, Moreover, the following simplifications are introduced: a) third-order mo-
ments corresponding to diffusion processes are neglected in all the equations; this is the customary as-
sumption in the wake problem, otherwise it is necessary to make an assumption on the relation between the
third-order moments and the average stream characteristics; b) constancy of the scale of turbulence L
and the pulsating motion energy E in the wake cross section is assumed so that they vary only as a functions
of the longitudinal coordinate.

The change in E across the wake can be considered additionally,

The system of equations is
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The quantities { } are averaged over the wake cross section; A =3.86,ag =0.8 [1], @ are empir-
ical constants.

As is done in the case of wake diffusion in a homogeneous medium [3, 4], the solution is sought in
the form of power-series dependences on the longitudinal coordinate.

Estimates (members containing the derivatives with respect to x with the factor Uj are not small

(uantities and, since 7 ~ x, taking them into account results in small corrections) can be obtained on the
basis of the system of equations
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The following equations are obtained for U, E, L
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The approximate condition [4]

SUy2 dydz = const, SUz2 dy dz = const

must be added to these equations, which yields in the axisymmetric case

S Urddr = const
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for a wake with zero momentum, and
SU dydz = const

for a wake with constant momentum.
Let us introduce the following dependences:
U0,0,2)]Up~(2)", E'=E|E,= @)*, L/Ly= (@), L]0 = (z")°
LIL = (@) o =24/d, I’ = L/d
where E;, Ly, ly", etc. are the characteristic values of the quantities, and d is the body diameter. Then
T =Tt = (@)"hE, B = (a) e
From a comparison between the members in the equations, we have
p=2—28,aq=1—8,y=29

At large distances the wake behaves as a plane, and this is because the scale lz' tends to a constant
value because of the rapid decrease in the value of (uz'z) as x' grows. In order to see this, let us integrate
the equation of motion
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To find the solution of this equation for given initial values U(0, y¥, z'), we can utilize the Fourier
transform method [5]
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The equation becomes
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and its solution will be
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Furthermore, applying the method elucidated in the paper cited, we obtain the solution as
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The vertical scale " tends to a constant value which passes through the maximum (because ofthe
shape of the function ¢(x*)). The maximum corresponds to the value of the coordinate

m* = v N2*/d

and equals
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For a wake with constant momentum the initial velocity distribution can be given in the form of a §
function

(v © v, )iy dr =v,D
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and the velocity distribution is
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7 ,’/ For large values of the coordinate x! we obtain
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Vsi In the case of a wake with zero momentum, an estimate can be
IxT’ obtained for the value of the velocity on the wake axis for large values
7 ~ LL p of x*. Also assuming that (I°,)? > 1
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we obtain
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In order to obtain a representation of the picture of wake development, let us utilize dependences ob-
tained for large values of x in the integrands for Z Tand 1,*'. Then
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The distance to m* includes the initial stage of wake development in which turbulent diffusion can be
considered the predominant effect. The diminution of the vertical wake dimension obtained and the subse-
quent picture of its development require further analysis. The solution obtained permits establishment of
a similarity criterion characterizing the length of the initial stage of wake development prior to collapse
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With respect to the factors Lo/d and U,/E,/2, it can be assumed that they depend slightly on the value
of the Reynolds number and can be assumed constant with a good enough approximation, The constancy of
the ratio Lo/d in jets and wakes is customarily assumed in analyzing these problems, Test data in [6] in-
dicates the constancy of the quantity UQ/EGV % in some range of values of the Reynolds number, Therefore,
the similarity criterion is the proportionality of the quantity x*/U,, i.e., the time after passage of the ob-
jeet prior to collapse of the wake, to the period of the natural oscillations of the medium
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p dz
This deduction corresponds to test data obtained on models (Fig. 1). The data are here marked as
follows: 1)® from [7], 2) O from [9], 3) e from [8].

A comparison with experimental results yields the value
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The relationship
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is obtained for the maximum value of the vertical scale of the wake.

The coefficient of wake flatiening increases with distance and can reach a significant magnitude
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The motion of models in a stratified medium was studied in [7, 8]. The test conditions presented be-
low were different, and the values of the ratio between the vertical dimension of the wake and the model
diameter turned out to be almost identical in these tests. It is seen from the solution obtained that this
agreement corresponds to the conditions existing.

According to [7] and [8] the test data are

U,cmfec = 45, 60; dem = 2.2, 15; |dp,/ dz|g-cm™ = 0.0052, 0.0001;
T'sec == 0,438, 3.16; [T'U, / d]== 3.0, 3.6

i.e., the values of l‘Z should be sufficiently close together.

On the basis of a comparison with existing results, the deduction can be made that the equations
utilized permit obtaining a solution yielding a satisfactory picture of wake development in the initial stage.
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